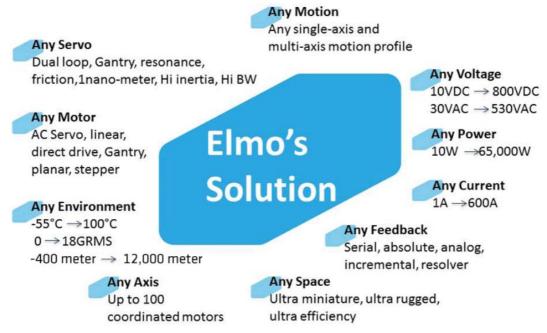


MAKING SMART MACHINES SMARTER

ELMO社ドライバ&コントローラで 多軸ロボットの運動アルゴリズムを 簡単に設計

エルモ モーション コントロール


- 2 350万個以上のモータドライバが全世界で稼働中
- ☑ 月間8,000個~15,000個のドライバを供給中

The Any philosophy

いかなるアプリケーションでもご使用いただけるモータドライバ

Meeting ANY need

Confidential | 3

The Any philosophy

Gold Twitterシリーズの場合は

☑ スペース

☑ モーション

🛛 雷圧

≥パワー

■ 電流

■ フィードバック

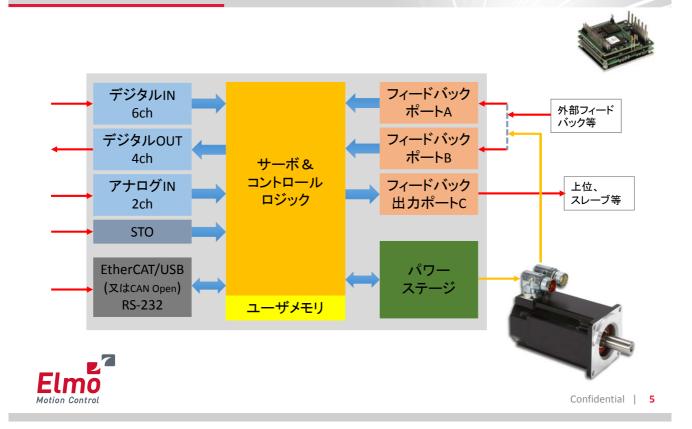
▶ モータ

 $30 \text{mm} \times 35 \text{mm} \times 14.4 \text{mm}$ (22.2g)

単軸、多軸同期(EtherCAT/CANOpen)

8-55VDC, 10-95VDC, 20-194VDC

80W~5,000W


1A~80A連続 (型番で最適な値を選択)

市販のほとんどのフィードバックに対応

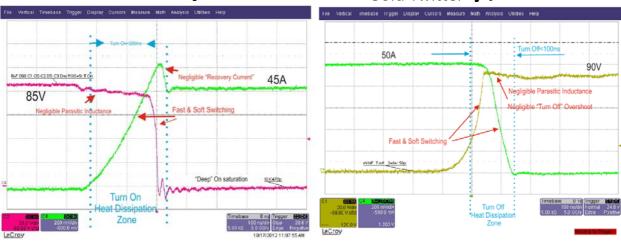
ACサーボ、DCブラシレス、DCブラシ、 DDリニア

G-Twitterドライバ内部構成

Gold Twitter電圧・電流オプション

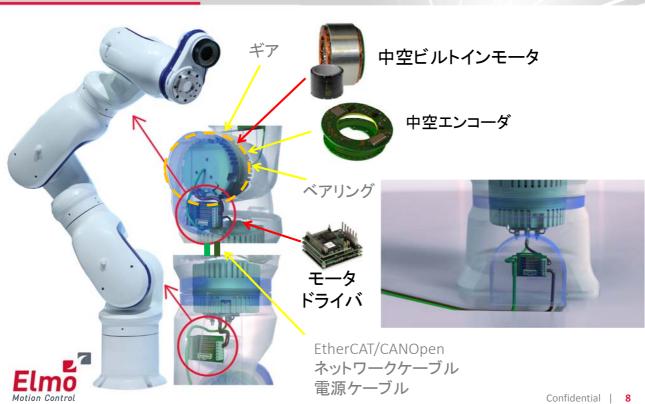
電源電圧		連続電流・出力								
60V	8~ 55VDC	30A	R50A							
		1440W	2200W							
80V	10~ 75VDC	R80A	R160A							
		5000W	10000W							
100V	10~ 95VDC	1A	3A	6A	10A	15A	25A	R45A	R50A	R140A
		80W	240W	480W	805W	1210W	2015W	3600W	4000W	11000W
200V	20~ 194VDC	3A	6A	10A	R15A					
		495W	990W	1650W	2400W					

ピーク電流=Ic×2 RxxタイプはIc=Ip


超高電流、超小型、超高効率

高速&ソフトスイッチングテクノロジーが理想的PWMを実現

Elmo's Fast And Soft Switching Technology


Gold Twitter オフ

Confidential | 7

ロボット各関節への組込み

開発に必要なすべてのソリューションを提供

☑ サーボドライバ

- ▶ ハイパフォーマンス、インテリジェントドライバ
- EtherCATマスター/コントローラ Maestro
 - > ネットワークベースのモーションコントローラ
 - ▶ 最大100軸をコントロール

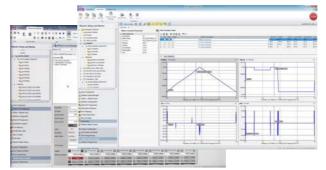
☑ 開発環境

- EASII(Elmo Application Studio) マルチファンクション&ユーザーフレンドリーな開発環境
- MDS(Maestro Developer Studio) モーションコントローラ(Maestro)の開発環境

Confidential | 9

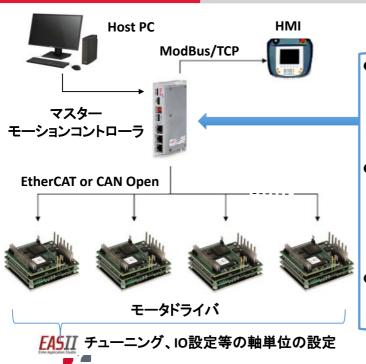
マエストロ モーションコントローラ

- EtherCAT, CANOpenベースのコントローラ
- ☑ 最大100軸まで制御
- ☑ サイクルタイム 100us (8軸) * 最新世代プラチナシリーズ
- ☑ ネットワーク標準
 - DS-301, DS-402, DS-406, その他モーション規格
- ☑ プログラミング環境
 - IEC61131-3(PLCopen), .NET and Win32 C++(Host PC), GNU C/C++(Maestro上プログラム)
- 強力な統合開発環境 "EASII"と"MDS" が、 効率の良いプログラム開発をサポート
- ☑ オンボードIO(オプション): DIO 12in/8out, アナログIO 4in(差動)/4out



ELMOユーザに無償で提供される開発環境

- 2 ネットワーク設定
- ☑ チューニング: オート、エキスパート(ボード線図、ニコラス線図)
- ☑ パラメータ設定
- ☑ IO設定
- モーションプログラミング: PLCopenに基づくプログラミング
- ☑ レコーダ/モニタ
- 2 パスシミュレータ
- SIL(Software In the Loop)



Motion Control

Confidential | 11

ELMOコントローラによる制御

- MDS (Maestro Developer Studio) Maestroモーションコントローラ上の プログラム開発(C++)
 - ➤ SILを使用して開発
 - ➤ ELMO社APIを使用して開発
- Visual Studio(VC++) Maestroモーションコントローラを 制御するHost PC上のプログラム 開発
 - ➤ ELMO社APIを使用して開発
- **EASII (Elmo Application Studio)** PLCopen (IEC61131-3)を用いて プログラム開発 EASII

■SIL (Software In the Loop)で開発

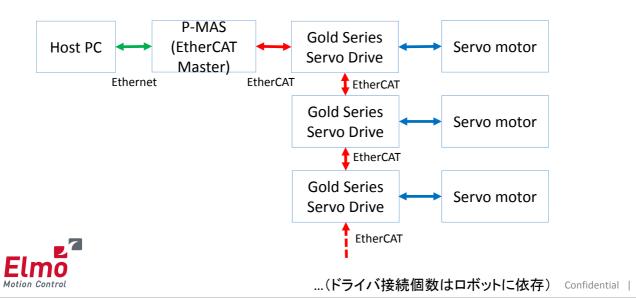
▶ 自社でアルゴリズムを持っている場合

ロボット開発支援機能

➤ SIL(Software In the Loop)

➤ ELMO社 API

垂直多関節ロボット等


☑ELMO社APIで開発

- ➤ ELMOで用意されているAPI
 - DELTAロボット
 - SCARAロボット
 - 平面3リンクロボット
 - 直交座標ロボット

SILで開発/制御構成

- Host PC 1台
- ▶ モーションコントローラ(P-MAS:Platinum Maestro) 1台
- サーボドライバ(Gold シリーズ)
- サーボモータ 軸数分

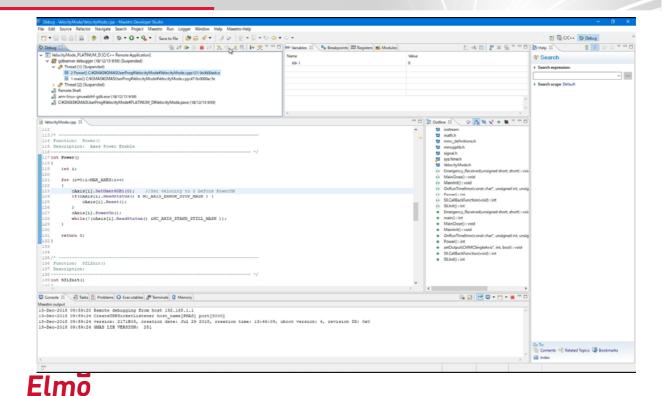
SILの機能

- ☑ P-MAS (Platinum Maestro)上で実行可能
- ☑ ユーザアルゴリズム (Kinematics)を組み込み可能
- ☑ EtherCAT サイクル毎に関数呼び出しする仕組みを用意
- ☑リアルタイム処理が可能

MDSを用いたSILの開発手順

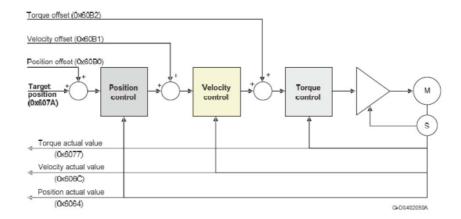
- ユーザアルゴリズム(Kinematics)を準備 1.
 - ➤ MATLAB/Simulinkを用いてアルゴリズムを設計後、C/C++の コードを生成
 - ▶ユーザアルゴリズムからC/C++のコードを直接作成
- 新しいCPPのプロジェクトを作成 2.
- ELMOが用意したテンプレートを選択 3.
- EtherCATサイクル毎に呼び出されるコールバックを定義 し、この中にユーザアルゴリズムを実装
- 定義したコールバック関数を指定してマルチメディアタイ マーを設定

MDS: Maestro Developer Studio


Confidential | 17

SILサンプルプログラム

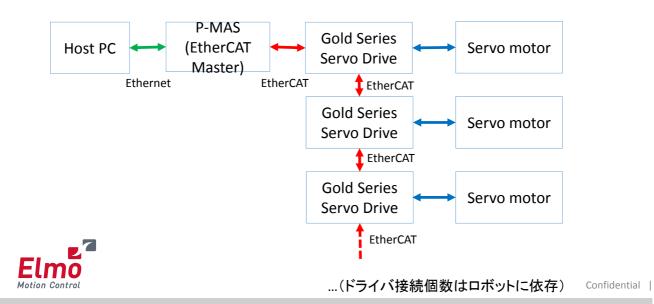
```
int SILInit()
  //タイマーを止める
   MMC_DestroySYNCTimer(gConnHndl);
   //初期位置や速度動作モードの設定などを行う
                                                                                SIL初期化処理
   cAxis[i].SetUser60B2(0);
   cAxis[i].SetOpMode(OPM402 CYCLIC SYNC VELOCITY MODE):
   // EtherCATサイクルイベント処理ルーチンとEtherCATサイクル何回に一回実行するかを設定(第二引数)
   MMC\_CreateSYNCTimer(gConnHndl\ ,SILCallBackFunction,1);
int SILCallBackFunction(void)
   //ここにユーザのアルゴリズムを入れる。
    //ユーザアルゴリズムに基づいて
    //位置、速度、トルクをアルゴリズムに従って適宜計算して送出する
    //位置の設定
                                                                           SILのEtherCATサイクル
    cAxis[i].SetUser607A(...);
                                                                           イベント処理ルーチン
    //速度の設定
   cAxis[i].SetUser60B1(...);
    //トルクの設定
    cAxis[i].SetUser60B2(...);
```



MDSの開発画面

SILで対応している制御モード

☑ CSP,CSV,CSTを使用する

> CSP: Cyclic Synchronous Position > CSV: Cyclic Synchronous Velocity ➤ CST: Cyclic Synchronous Torque



Confidential | 19

ELMO社APIでの開発/制御構成

- Host PC 1台
- ▶ モーションコントローラ(P-MAS:Platinum Maestro) 1台
- サーボドライバ(Gold シリーズ) 軸数分
- サーボモータ 軸数分

APIを用いたロボットの開発手順

- 開発するロボットの種類を以下から選択
 - **▶ DELTAロボット**
 - **▶ SCARAロボット**
 - ▶ 平面3リンクロボット
 - ▶直交座標ロボット
- 2. ロボット諸元の入力
- 3. 初期化ルーチンの出力
- 4. EASIIを用いて動きを確認
- APIを使用してプログラムを実装

APIを用いたロボット開発に使うEASII機能

Kinematic Editor

- ▶ Robotの諸元を入力する
- ▶ 入力した諸元に従って初期化コードを出力する ✓ 機械座標系(MCS)と軸座標系(ACS)の変換テーブルの作成機能

Group Motion

- ▶ End Effectorを動かす機能
- ▶ End Effectorの動きを記録する機能
- ▶ End Effectorの動きを表示する機能
- ➤ 実機とシミュレータ両方の環境でJogを操作して確認可能
- ➤ 実機とシミュレータ両方の環境で End Effectorの座標の位置を スクリプトとして記録
- ▶ 作成したプログラムをシミュレータ上で動作を確認

Confidential | 23

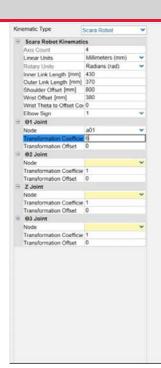
APIを用いたロボット開発環境

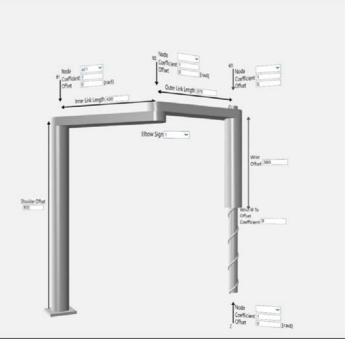
2種類の環境が用意されています

- ☑Visual Studio(VC++) Motionコントローラを制御するHost PC上のプログラム開発
- MDS(Maestro Developer Studio)
 - MDSで新規にC++のプロジェクトを作成する 1.
 - ELMOのプログラムのテンプレートを選択 2.
 - APIを使用してRobotに関連するコードを追加していく
 - ロボットの諸元を初期化するコードを追加
 - ロボットの制御コードを追加

主要なAPI

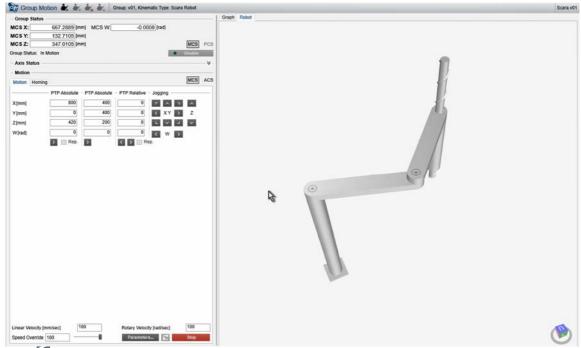
ロボット制御に必要なAPIが用意されています


- ▶モーションコントローラMaestroに用意されているAPI(代表例)
 - ▶運動学や逆運動学に基づき座標変換を設定
 - ▶多軸で直線、円弧、スプラインなど軌跡を描く
 - ▶単軸で位置、速度、トルクを指定
 - ➤Homing処理を行う
 - ▶データレコーディング

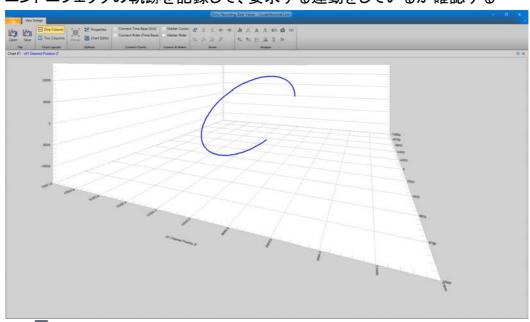


Confidential | 25

ロボットの諸元入力

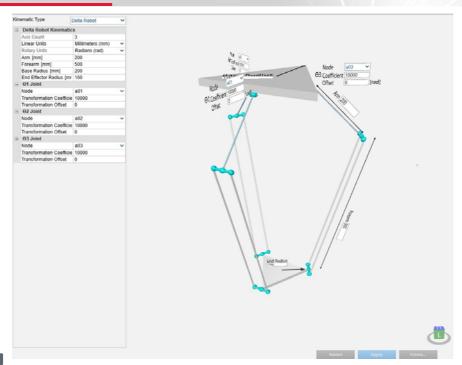


ロボットの動作確認


Elmo

Confidential | 27

エンドエフェクタの軌跡の記録


エンドエフェクタの軌跡を記録して、要求する運動をしているか確認する

DELTAロボットの開発

Confidential | 29

お問い合わせ先

ーー・ーー・ 日本パルスモーターグループ NPM**ハイテクノロジーズ株式会社**

〒113-0033 東京都文京区本郷2-16-13 日本パルスモータービル内

TEL:03-3813-8847

Email:sales@npm-ht.co.jp

ホームページ: www.npm-ht.co.jp

Confidential | 31