

The VLH-35 is a member of the VLH series of Electric Encoders[™] a product line based on Netzer Precision Position Sensor proprietary technology. EE products are characterized by features that enable unparalleled performance:

- Low profile (6 mm)
- Hollow shaft (Stator / Rotor)
- No bearings or other contact elements
- High resolution and unparalleled precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and magnetic fields
- Very low weight
- Holistic signal generation
- Digital interfaces for absolute position

General

Angular resolution	17-19 bit
Maximum tested static error	±0.05°
Maximum operational speed	6,000 rpm
Measurement range	Single turn, unlimited
Rotation direction	Adjustable CW/CCW*

* Default same direction from bottom side of the encoder

Mechanical

Allowable mounting eccentricity	±0.1 mm
Allowable axial mounting tolerance	±0.15 mm
Rotor inertia	1,930 gr · mm ²
Total weight	5.5 gr
Outer Ø /Inner Ø/ Profile	35 / 11/ 6 mm
Material (stator, rotor)	FR4
Nominal air gap (stator, rotor)	0.6 mm +/- 0.15 mm

Electrical

VLH-35-V01

Supply voltage	External 5V DC ±5%
Current consumption	< 82 mA
Interconnection	Connector

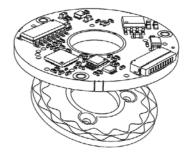
The holistic structure of the Electric EncoderTM makes it unique: Its output reading is the averaged outcome of the entire area of the rotor. This feature allows the EE a tolerant mechanical mounting and to deliver outstanding precision.

Due to the absence of components such as ball bearings, flexible couplers, glass discs, light sources and detectors along with very low power consumption enables the EE to deliver virtually failure-free performance in nearly all types of conditions.

The internally shielded, DC operated EE includes an electric field generator, a field receiver, sinusoidal-shaped dielectric rotor, and processing electronics.

The EE output is a digital serial synchronous with absolute position single turn.

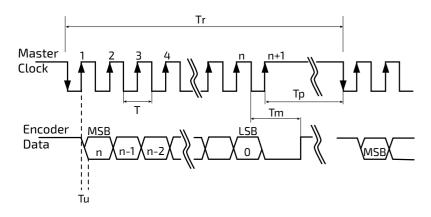
This combination of high precision, low profile and, low weight has made Netzer Precision encoders highly reliable and particularly well suited to a wide variety of industrial automation applications.

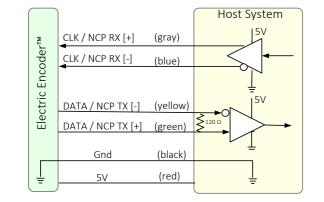

Environmental

EMC	IEC 6100-6-2, IEC 6100-6-4
Operating temperature	-25°C to +105°C
Storage temperature	-40°C to +105°C
Relative humidity	98% Non condensing
Shock endurance	40 g for 11 ms
Vibration endurance	20 g 10 – 2000 Hz
Protection	IP 40

Calibration / Compensation

Offsets	Manual
Signals level	Manual
Signals integrity	Error
Zero position	Manual





Digital SSi Interface

Synchronous Serial Interface **(SSI)** is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations
n	Total number of data bits	17-19
Т	Clock period	
f= 1/T	Clock frequency	0.1 ÷ 1 MHz
Tu	Bit update time	90 nsec
Тр	Pause time	26 - ∞ µsec
Tm	Monoflop time	>25 µsec
Tr	Time between 2 adjacent requests	Tr > n*T+26 µsec
fr=1/Tr	Data request frequency	

SSi / BiSS output signal parameters

Output code	Binary
Serial output	Differential RS-422
Clock	Differential RS-422
Clock frequency	0.1 ÷ 1 MHz
Position update rate	35 kHz

SSi/BiSS interface pin/cable color code

DF52 connector pin no.	DB9 F (cable end) pin no.	Cable Color	Function
8	2	White with Blue line	CLK + / NCP RX +
7	1	Blue with Black line	CLK - / NCP RX -
6	4	Yellow with Red line	DATA - / NCP TX -
5	3	Pink with Black line	DATA + / NCP TX +
4	5	Sky-blue with Black line	GND
3	8	Red with Blue line	5V

Software tools: (SSi / BiSS - C)

Advanced calibration and monitoring options are available by using the factory supplied <u>Electric Encoder Explorer software</u>. This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

INDUSTRIAL

AUTOMATION

Digital BiSS-C Interface

BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode). The BiSS-C interface as the SSi is based on RS-422 standards.

VLH-35

Bit #		Description	Default	Length
28	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
27	Start	Encoder signal for "start" data transmit	1	1 bit
26	"O"	"start" bit follower	0	1 bit
825	AP	Absolute Position encoder data		
7	Error	Error (BIT Optional)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x6 + x1 + x0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits
	Timeout	Elapse between the sequential "start"request cycle's.		25 µs

2

Resolution Code Bit

F

G

Н

17

18

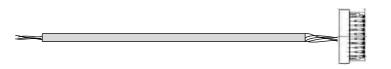
19

CPR

131,072

262,144

524,288


Cable Information

Ordering Code

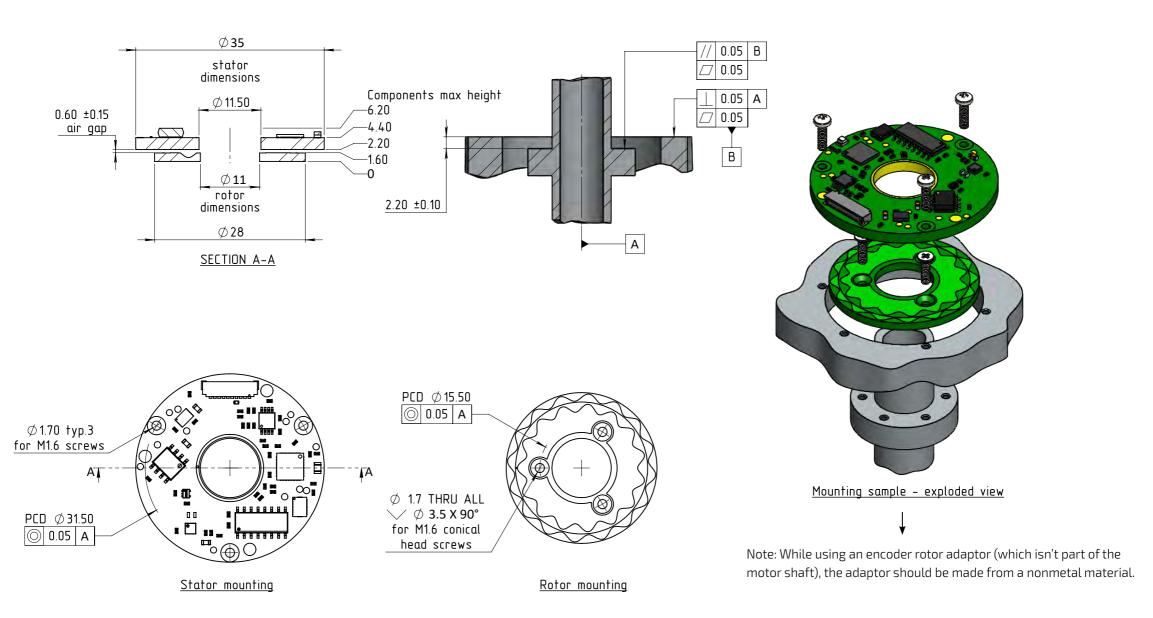
VLH-35-SH-CH-nnn					
VLH Pr	oduct line			nnn	Custom
Outer D)iameter			Interco	onnection
Output	:			Н	Horizontal (Connector)
S	SSi			С	Connector
I	BiSS				

Cable (optional)

SSi / BiSS	Remarks
CB-00165	AWG30, 250 mm

Part No. on board connector: Crimping plug, 110pin DF52-10P-0.8C

Related documents


VLH-35 User Manual: mechanical, electrical and calibration setup.

3

ICD

Unless Otherwise Specified		
Dimensions are in: mm Surface finish: N6		
Linear tolerances		
0.5-4.9: ±0.05 mm	5-30: ±0.1 mm	
31-120: ±0.15 mm	121-400: ±0.2 mm	

VLH-35-V01

4